skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Antwerpen, Raf"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Surface mass loss from the Greenland ice sheet (GrIS) hasaccelerated over the past decades, mainly due to enhanced surface meltingand liquid water runoff in response to atmospheric warming. A large portionof runoff from the GrIS originates from exposure of the darker bare ice inthe ablation zone when the overlying snow melts, where surface albedo playsa critical role in modulating the energy available for melting. In thisregard, it is imperative to understand the processes governing albedovariability to accurately project future mass loss from the GrIS. Bare-icealbedo is spatially and temporally variable and contingent on non-linearfeedbacks and the presence of light-absorbing constituents. An assessment ofmodels aiming at simulating albedo variability and associated impacts onmeltwater production is crucial for improving our understanding of theprocesses governing these feedbacks and, in turn, surface mass loss fromGreenland. Here, we report the results of a comparison of the bare-iceextent and albedo simulated by the regional climate model ModèleAtmosphérique Régional (MAR) with satellite imagery from theModerate Resolution Imaging Spectroradiometer (MODIS) for the GrIS below70∘ N. Our findings suggest that MAR overestimates bare-ice albedoby 22.8 % on average in this area during the 2000–2021 period with respectto the estimates obtained from MODIS. Using an energy balance model toparameterize meltwater production, we find this bare-ice albedo bias canlead to an underestimation of total meltwater production from the bare-icezone below 70∘ N of 42.8 % during the summers of 2000–2021. 
    more » « less